Turnout Control Progress

I have mentioned previously that getting hand laid points connected up and suitably under control has been a stumbling block in past efforts. The achievable scope of Comstock Road (4 or 5 turnouts total) makes the mental size of the task easier to contemplate. I have begun the new year as I mean to go on, by tackling the mentally hard things and have made further progress.

First up is the connecting rod from switch stand location to throw bar. Increasingly prototypical possibilities have occupied my imagination but when I found myself contemplating scratchbuilding scale clevis’, I realized that I was making things harder than they should be, certainly for a first attempt. I resolved to make something out of the piano wire on hand.

I needed an eye or loop in the wire to connect to the vertical shaft comping up from beneath the layout. (I am going for a rotational motion like a switch stand rather than the model railroady back and forth in a big hole. I fashioned a simple jig consisting of a piece of scrap plywood with a nail driven in and cut off, and adjacent to a piano wire sized hole. A right angle bend near the end of the wire goes into the hole and the wire is wrapped around the nail to form the eye. I got the idea for this jig from the Animated Scale Models Handbook.

Here is the jig.bentwirejig

And here is the result trimmed up.eyeinwire

I have got the vertical brass tube and wire combo installed and connected to the throwbar. (We pause while I dash downstairs to take a photo of the installation which I apparently forgot to do. Lack of photos is usually a good sign since it indicates that I have got a head of steam up.) Here is a shot of the connecting rod installation. Bending the crank in the end of the vertical wire was a challenge and I will consider better alternatives such as soldering on a separate piece of brass bar. It does work and will be concealed by the switch stand. The other reason for a separate bar would be to allow the vertical wire to continue up through the stand so the target can rotate.connectingrod.jpg

Finally, we get to installing the servo, Tam Valley Octopus servo driver and associated electrical bits. I have got as far as fashioning a bracket for the servo using a section of 1/2″ aluminum channel from the big box store. I picked this idea up somewhere in the model railway reaches of the internet and it works a treat. The servo is just a friction fit in the channel after a slight pinch with a pair of pliers.bracketmk1

Advertisements

Jeweler Saw Practice

Having just finished the electronic part of installing a DCC decoder in Comstock Road’s lone Atlas O SW-8, I set out to finish the job by making sure everything was correctly insulated, taped down and able to fit inside the diecast metal shell. Perceptive readers might wonder why I mention the shell material. That is part of the fun!

Getting the wires all tucked in was not too much of a challenge but I then discovered that my estimation of clearance between speaker top and shell was, er, optimistic. The issue was the speaker mounting lugs cast into the inside of the shell. They are almost a fit for the chosen TCS speaker but only almost. I have also elected to not attach the speaker to the shell to give more clearance for a future detailed grill.

Here is what the inside looked like when I started.sw8mountlugs

Since the lugs had to go anyway, I resolved to “daylight” the opening back to something akin to the prototype rectangle. This would give plenty of room for the speaker to shoot upwards.

I got out my trusty jeweler’s saw and my excessive supply of #0 blades. Back in the day, I bought a gross of this blade size in a fit of enthusiasm and only afterwards discovered that #0 is too coarse for .015″ material. I have despaired of every finding a use for all those blades but no longer!

Even the relatively heavy #0 blades are fragile and do not tolerate careless use. You can turn corners in a cut but you have to carefully saw in place while rotating cautiously. If you push to hard you can jam the blade and snap it. Letting the work twist on the blade while repositioning can break a blade… You get the idea. Fortunately, I have about 12 dozen blades for just such an emergency. Or I did. I am now better at sawing and have less blades.expendovblades

Eventually, I got the opening cut out to my satisfaction. Here is the view from above with the shell on. (Apologies for the bad focus.)speakerhole

And here is the top view with the stock screens and grills back in place. All being black, the speaker is not visible unless you get up close and look straight.sw8postsurgery

DIY Jumper Wires

Anyone who has ever built a prototype circuit using a breadboard has encountered jumper wires. These wires have connectors on the ends which can fit into the holes on the board as well as the appropriate connectors on circuit boards. There are also male and female connectors (a jumper wire has a 1 wire version of these on each end). These connectors are usually referred to as type JR. You can purchase some premade but if you want anything odd like a 10 wire connector splitting to 6 and 4 connectors, you need to make your own. And of course, there is a crimper for that.

My plan for hooking up the control panel for Comstock Road’s traverser control panel involves the aforementioned split arrangement. This became the pretext to purchase yet another crimping tool along with the appropriate connector kits. And learning began…

I discovered that getting a good crimp was a bit of a challenge and it took a couple of YouTube video watchings and 3 out of 4 pins on the connector botched before I got it sorted. You cannot buy the pins separately so off I went to get another connector. Fortunately, the 4-wire connector is less than a dollar so the tuition is not high. If you get one of these crimpers, buy extra connectors for practice.

Here is the tool and the 4 and 10 pin connectors in progress.jrcrimp

Micromark Spiking Pliers

After a very stressful couple of weeks, it was good to get home and do a bit of work on the layout. I finished correcting the various gauge tightness issues on the high track turnout (rail braces can only push in, not pull out so you had better start wide) and have got the guard rails and rail braces installed. I will still need to fit the gauge plates and throw rods but the test car runs through each leg if I spike the points over. I am pleased that I have got things all working without messing up the flowing lines in the original Templot template.hightrackturnout

In doing this bit of trackwork, I have been trying out another one of my purchases from the GTA Train Show: a pair of Micromark spike insertion pliers. I had been meaning to get a pair whenever but a vendor at the show had a large array of Micromark items available including the pliers so I jumped at the chance to get them right now.

The plier are similar in feel to rail nippers but have flat jaws with a T-shaped groove in the ends to hold a spike. My dodgy photo show the T but the Micromark site has a much better version.

spikingpliers

These pliers are kind of pricey and I was not certain they would work with the Proto87 Stores etched spikes but it turns out they do! The fit isn’t tight but it works well enough and considerably better than the ol’ needle nose.

I estimate that using these pliers doubles the speed at which I can get a spike in while also reducing the number of bent spike failures. Bent spikes are an expense in modeler composure if nothing else. 10 seconds vs about 20 doesn’t sound like a big deal and in the single case it isn’t. If I calculate the total savings in time then the purchase is a no brainer.

roughly 36 feet of track x 22 ties per foot x 4 spikes per tie x 10 seconds = 3160 seconds ~ 9 hours

~$30 / 9 hours is 3.33 / hour.  Anyone’s time is definitely worth more than that. The reduced aggravation from more precise spike placement and fewer (almost none) bent spikes also significantly increases my enjoyment of track laying. Another on my list of should have done it a long time ago things.

0.35mm Off the Middle

The lead screw kit I recently acquired for the traverser included an 8mmx6mm flexible coupler for joining 8mm lead screw to a stepper motor. I had hoped that the specs meant 6.35″ aka 1/4″ but no such luck. My choices where either to go and buy an 8×6.35 coupler from my local robotics store (yeah, being able to say that is kind of cheating) or drill out the 6mm hole to take a 1/4″ shaft. The couplers are less than $10CDN so it isn’t that big a deal but I decided that drilling with my lathe was a capability I needed to exercise.

Of course, I didn’t have an appropriate set of drill bits so out I went to the local big box store. $50 later, I was ready to save $10. Payback on the lathe is going to take a long time at this rate. 🙂 Seriously, though, I think a boring capability (for bigger holes) is the only thing I still need to acquire. From hereon in, it should be all down hill.

The actual setup and operation was refreshingly simple, I just removed the set screws from the coupler, chucked it in the self-centering three jaw chuck, chucked the bit in the Jacobs chuck in the tail stock, adjusted for distance and drilled away. It took no more than five minutes.

If this was all I ever needed to do, the lathe would obviously be overkill. On the other hand, having one available makes this sort of thing dead easy and it gives me satisfaction to get useful things done with it.

Here is the setup with the work just done:upsized

And here is the coupler installed on the stepper shaft.quarterinched

Wiring Tools

Operating single track segments via test leads is getting old fast. I have wired up the traverser but it is not yet connected to anything. Being sectional, Comstock Road requires a robust quick connect solution for making electrical connections between sections. I decided to invest in a crimper and go with one of the preferred solutions for modular groups, Anderson Powepole stackable connectors. (Of course, after I assumed I needed to acquire a crimper, at lunch, Trevor says “you could have borrowed mine…” Serves me right for assuming he didn’t have one.

Anyway, here are my newest and oldest wiring tools along with the first pair of connectors installed. The orange handled one is a TC-1 crimper for the Powerpoles newly acquired via a certain e-commerce behemoth. The yellow handled one is a self-adjusting wire stripper bought many years ago from a local big box retailer. If you don’t own one of these self-adjusting wire strippers and are relying on something cruder, I highly recommend you invest in one. If you do much wiring at all, the amount of time saved makes them well worth it.

wiringtools.jpg

That’ll Do

gaugemk2

Second version of the roller gauge with the relieved center section. Second attempt at this design. Pro Tip: don’t part off the piece until you check that the rail actually fits in the slot.

I am getting somewhat faster at this. It took about 45 minutes for me to make it with all the measuring, re-measuring, calculating, and most especially, changing tools. The lathe came with a quick change tool post but only one regular tool holder. I have ordered some more holders and will probably hold off on the next one until the order gets here.

I have been plunking along on the tieplate infill and have gotten the traverser down to the fine adjustment stage. Time to get rolling on that.